Preliminary Phytochemical Screening and Qualitative Estimation of Herb (Moss Rose)

*¹Shweta Tyagi, ²I.P. Pandey, ¹Ashish Kumar *¹D.A.V.(PG) College, Muzaffarnagar, U.P., India

²Professor Emeritus Dehradun, India

*Email-shewtatyagi@gmail.com

Doi-10.51129/ujpah-2021-31-2(8)

Abstract-The four differentvarieties (white, yellow, pink and red) of Portulaca grandiflora (Moss Rose) were screened for phytochemical preliminary their estimation. These plants were extracted by ether, acetone and ethanol, diethvl respectively. The results showed that all the different extracts having considerable amount of all the phytochemicals except anthraquinone.Ethanolic steroids and extract of all plant varieties show maximum qualitative estimation while the extract prepare with diethyl ether shows minimum.

Keywords:Portulaca grandiflora, Phytochemical, Moss rose, Qualitative.

Introduction

Portulaca grandiflora is a drought and heat tolerant annual native to hot, dry plains in India. This herbaceous plant in the purslane family (Portulacaceae) is cultivated throughout the world as a garden annual for its showy flowers that bloom all summer long with little care. Moss rose is a semi-succulent plant that stores water in its fleshy leaves and stems approximately 10-30cm high, leaves about 12-35 mm in length and 1-4 mm in width, linear-subulate, thick, and fleshy and spirally arranged. The bright green leaves are oblong to cylindrical with pointed tips. Common names embrace nonvascular plant Moss rose in English, Nonia in Hindi, Pungmapansatpi in Manipuri and Gul-e-Shama in Urdu, portulaca, and Sun plant.(Dkhilet al.,2011)Plant productsstill principal remain the source of pharmaceutical agents used in traditional (Prince and medicine Prabakaran, 2011).Phytochemicals are naturally occurring in the medicinal plants leaves, vegetables and roots that have defence mechanism and protect from various diseases(Ncube. N.S. et al..2008). Phytochemicals are primary and secondary compounds. Chlorophyll, proteins and common sugars are included in primary

constituents and secondary compounds have terpenoid, alkaloids and phenolic compounds (Krishnaiah*et al*, 2007). Terpenoids are very important in attracting useful mites and consume the herbivorous insects (Kappers, 2005).The main objective of our research work was to analyse the presenceor absence of different phytochemicals in the selected plants used for healing and curing of various diseases.

Materials and Method Plant materials

P. grandiflora or moss rose was obtained from Rama Nursery, Roorkee Road, Muzaffarnagar. The plants were harvested at maturity, and during or prior to their flowering period. Four varieties (orange, red, pink and white) of the same species were used in this study.

Preparation of plant extracts

Preparation of sample and extraction were carried out as described by Sahaet al. with slight modifications. The whole fresh plant samples (stem, flower and leaf) were washed with distilled water and cut in to small pieces, shade- dried under for 1 week and followed by complete drying at 40 °C in oven. Then grinned to from powder.10 g of these dried sample from each variety was extracted separately with 100 mL of three different solvents: acetone, di ethyl ether and ethanol for 24 h in ashaker at 100 rpm at temperature 30 °C. The extracts were filtered using Whatman filter paper and filtrates were used as an extract. Extractswere kept at 4 °C until the bioassay analyses.

Phytochemical screening (Qualitative method)

Preliminary phytochemical tests were out the different carried on extracts(acetone, diethyl ether and ethanol) of Portulaca grandiflora using standardprocedures to identify the constituents as described by (Sofowara, 1993:Trease Evans, 1989; and Harborne, 1973 and 1984).

No. 31

Test for Tannins: 1ml of every sample is boiled in 20 ml of distilled water in a test tube and then filtered separately. Acouple of drops of 0.1% ferrous chloride are additional and determined for brownish green or a blue-black colouration.

*Test for Saponins:*2 ml of every sample is boiled in 20 ml ofdistilled water in a water bath and filtered separately. 10ml of the filtrate is mixed with 5 ml of distilled water and jolted smartly for a stable persistent froth. The frothing is mixed with three drops of olive oil and jolted smartly, then determined for the formation of emulsion.

*Test for Flavonoids:*5 ml of dilute ammonia solution were added to a little of the liquid filtrate of every plant extract followed by addition of targeted H_2SO_4 . A yellow colouration determined in every extract indicated the presence offlavonoids. The yellow colouration disappeared on standing.

Test for Steroids: 2 ml of acetic anhydride is added to 1mlof extract of every sample with 2 ml H_2SO_4 . The colour modified from violet to blue in some samples indicating the presence of steroids.

Test for Terpenoids (Salkowski test):5 ml of every extract is mixed in 2 ml of chloroform, and targeted H₂SO₄ (3 ml) is vigorously additional to create a layer. A venetian red colouration of the interface points out positive resultsfor the presence of terpenoids.

Test for Triterpenoids: One ml of every extract is addedto1 ml of chloroform; 1 ml of acetic anhydride wasadded following the added of 2 ml of diluted H_2SO_4 . Formation of blood-red violet colour indicates the presence of triterpenoids.

Test for Alkaloids: Mayer's test: To a couple of (one) ml of every extract, a drop of Mayer's chemical agent was added. A creamy or white precipitate indicated the presence of alkaloid.

Test for Anthraquinones:5ml of every extract solution was hydrolysed with diluted H_2SO4 extracted with benzene. 1 ml of dilute ammonia is added in this solution. Pink coloration indicated the positive response for anthraquinones.

*Test for Polyphenols:*Plant product (4 ml) is added to every extract (1ml) and also the ensuing resolution is transferred in

take a look at tubes and warmed in a water bath(15 minutes). 3 drops of freshly ready ferrous cyanide resolution were added to the extract solution. Formation of a blue colour indicated the presence ofpolyphenols.

Test for Glycosides (Keller-Killani test): Five ml of every extract was treated with 2 ml of glacial acetic acidcontaining one drop of ferrous chloride resolution. This is oftenunderlayed with 1 ml of targeted H₂SO₄. A brown ring of the interface indicates a of deoxysugarcharacteristicss cardenolides.A violet ring appeared below the brown ring, whereas within the carboxylic acid layer, a green ring could be observed step by step throughout skinny layer.

Results and Discussion

This study revealed that the presence of all the phytochemicals considered as active medicinal chemical constituents except anthraquinone and steroids as shown in table. Important medicinal phytochemicals terpenoids, triterpenoids, such as flavonoids, alkaloids, tannins, glycosides, polyphenol and saponin were present in considerable amount of all the samples. phytochemical The screening and qualitative estimation of all four plants studied showed that the whole plant (leaves, stem and flower) was rich with important phytochemicals.Ethanol extract of all the four varieties showed maximum presence while diethyl ether showed minimum effect with all varieties. Moss rose varieties were found rich with polyphenol, alkaloids, glycosides and content, Saponins saponin are therapeutically important because they lower bad fats in the body and have anticancer potentials. Saponins help in cholesterol lowering which will subsequently reduce the risk of cardiovascular diseases such as hypertension which usually leads to Saponins stroke. are known to produceinhibitory effect on Inflammation (OlayinkaTemitayoOgunmefun,

2018). Terpenoids are reported to have antiinflammatory, anti-viral, anti-malarial, inhibition of cholesterol synthesis and anti-bacterial (Mahato and Sen, 1997).

VOL.II

No. 31

Plants having alkaloids areusedin medicines for reducing headache and fever. These are attributed for antibacterial and analgesic properties (Pietta, 2000).Alkaloids are useful as central nervous system (CNS) stimulants in pharmacological application.Alkaloids also find its usefulness as pain relievers. In industries anthraquinones are used for washing of bowels (laxatives) and in dye production.Flavonoids function to reduce the risk of coronary heart diseases and possess anticoagulant, anti-inflammatory, and aphrodisiac properties(OlayinkaTemitayoOgunmefun,(2018).

Table- Preliminary Phytochemical screening and qualitative estimation of the four varieties (red, yellow, white and orange) of *Portulaca grandiflora* whole plant extracted with different extracts (acetone, di ethyl ether and ethanol)

S.No.	Phytochemicals	plant varieties	Acetone	Di Ethyl Ether	Ethanol
1	Tannins	Red	+	+	+++
		Yellow	+	+	++
		Pink	+	+	++
		White	+	+	+++
2	Saponins	Red	++	++	++
		Yellow	+	++	++
		Pink	+++	++-	++
		White	+++	++	++
3	Flavonoids	Red	++	+	+++
		Yellow	++	+	+++
		Pink	+	+	++
		White	++	+	++
4	Steroids	Red	+	-	-
		Yellow	-	-	-
		Pink	-	-	-
		White	-	-	-
5	Terpenoids	Red	++	+	+
		Yellow	+	+	++
		Pink	+	+	++
		White	++	++	++
6	Triterpenoids	Red	++	++	+++
		Yellow	+	+	+++
		Pink	+	++	++
		White	++	++	++
7	Alkaloids	Red	+++	+	+++
		Yellow	++	+	++
		Pink	+++	+	+++
		White	++	+	+++
8	Anthraquinones	Red	-	-	-
		Yellow	-	-	-
		Pink	-	-	-
		White	-	-	-
0	Polyphenols	Red	++	++	++
		Yellow	++	++	+
У		Pink	+	++	++
		White	++	+++	+++
10	Glycosides	Red	++	+	+++
		Yellow	+	+	+++
		Pink	++	++	++
		White	+++	+	+++

ConclusionThe selected plants varieties of moss rose plant is the rich source of the secondarymetabolites i.e., alkaloids, flavonoids, terpenoids, and glycosides etc. Medicinal plants play a vital role in preventing various diseases. The phytochemical analysis of these plants is also important and have commercial interest in both research institutes and pharmaceuticals companies for manufacturing of the new drugs for treatment of various diseases.

References

Dkhil, M.A.; AbdelMoniem, A.E.; Al-Quraishy, S. and Saleh, R.A.Antioxidant effect of purslane (*Portulacaoleracea*) and its mechanism of action. *JMPR*, 2011,5: 1589-1593.

Harborne, J.B. Pytochemical methods, London.*Chapman and Hall, Ltd.*, 1973: 49-188. Harborne, J.B. Phytochemical methods.A guide to modern technique of plant analysis.*London: Chapman and Hall*, 1984:78-21

Kappers, I.F.; Aharoni, A.; Van Herpen, T.W.;Luckerhoff, L.L. and Dicke, M. et al. 'Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis'. *Science* 2005,309: 2070-2072.

Krishnaiah, D.;Sarbatly, R. and Bono, A. Phytochemical antioxidants for health and medicine: A move towards nature. *BiotechnolMolBiol Rev*.2007, 1: 97-104.

Mahato, S. and Sen, S. Advances in triterpenoid research, 1990-1994.*Phytochemistry*, 1997, 44: 1185-1236.

Ncube, N.S.*et al.* Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. *Afr J Biotech* 2008, 7: 1797-1806.

Nostro, A.;Germanò, M.P.;D'angelo, V.; Marino, A. andCannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity.*Lett Appl Microbiol*, 2000, 30: 379-384.

OlayinkaTemitayoOgunmefun. Phytochemicals God's Endowment of Curative Power in Plants, Open access peer- reviewed chapter,2018, DOI: 10.5772/intechopen.7723. Pietta, P.G. Flavonoids as antioxidants. *J Nat Prod*, 2000, 63: 1035-1042.

Prince, L. and Prabakaran, P.() Antifungal activity of medicinal plants against plant pathogenic fungus*Colletotrichumfalcatum.Asi J Plant Sci Res.*, 2011, 1: 84-87.

Saha, K.; Lajis, N.H.; Israf, D.A.; Hamzah, A.S.; Khozirah, S.;Khamis, S. and Syahida, A. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants.*J.Ethnopharmacol*, 2004, 92: 263-267.

Sofowara, A. Medicinal plants and Traditional medicine in Africa. *Spectrum Books Ltd., Ibadan, Nigeria*, 1993:289.

Trease, G.E. and Evans, W.C. Phenols and Phenolic glycosides. In:Textbook of Pharmacognosy. (12th ed.). Balliese, Tindall and Co, London 1989 Pp. 343-38.