Phytochemical Investigation of EtOH Extract of Flowers of
Senecio Chrysanthemoide, Asteraceae

1S. C. Sati, 2Maneesha D. Sati, 3Shikha Saxena and 4I. P. Pandey

1Department of Chemistry, H.N.B. Garhwal University (A Central University)
Srinagar Garhwal, Uttarakhand, India. 246174
2Department of Chemistry, Govt. Degree College Devprayag,
Tehri Garhwal, Uttarakhand, India
3Department of Chemistry, D.A.V. (PG) College Dehradun, Uttarakhand, India
4Professor Emeritus, Dehradun, Uttarakhand, India

Email: sati_2009@rediff mail.com

Received – May 17, 2022
Revised – May 27, 2022
Accepted – June 1, 2022
Published – June 18, 2022

Abstract - From the ethanolic extract of flowers of *Seneciochrysanthemoideone*
flavone diglycoside onexanthone glycoside have been isolated. The structures of the
isolated compounds were identified with the help of chemical and spectral studies.

Key words: *Senecio Chrysanthemoide*, Asteraceae, Flavone Glycosides and Xanthone.

Introduction

Senecio species are used in folk medicine for the treatment of cuts, wounds and as
antiemetic, anti-inflammatory, antimicrobial and vasodilator. The parts mostly used
are leaves, stem and flowers1, the pyrrolizidine alkaloids and the furanosesquiterpenoids
are the most important constituents of this genus and thought to be responsible for all of pharmacological
activities2-5. The genus *Senecio*, belongs to the tribe Senecioneae, is the largest and
most complex genus in the family of the Asteraceae (Compositae) includes more than 1500 species with a worldwide
distribution6. The chemical constituents of the genus *Senecio* include notably
sesquiterpenoids, monoterpenoids7-8, diterpenoids9, triterpenoids10, phenolic and
flavonoid compounds11-16, essential oils17 and pyrrolizidine alkaloids5. In India
the genus *Senecio* comprises 43 species including *S. chrysanthemoide* which grows
endemically in all over India18. The present paper deals with isolation and character-
ization of flavone di-glucoside and 3-acetoxyxanthone from the alcoholic extract of the flowers of *S. chrysanthemoide*.

Material and Methods

Mps. Uncorrected, Column chromatography was carried out on silica gel (60-120) mesh. Merck, eluting solvent
(CHCl3MeOH). U.V. was taken in MeOH. 1H-NMR spectra were taken using TMS as internal standard and CDCl3 and CD3OD
as solvents, all the signals are expressed as values downfield from TMS.

Collection of Plant Material

The Flowers of *S. chrysanthemoide* were collected in flowering stage from in
Tunganath Chopta, Rudraprayag U.K. India. The plant was identified by expert
Taxonomists Department of Botany HNB Garhwal University Srinagar Garhwal. The
voucher specimen (H.N.24446) is available in the herbarium of Plant Identification Laboratory department of Botany HNB Garhwal University Srinagar Garhwal.

Extraction and Isolation

The air-dried and coarsely powered flowers of the plant were defatted with light petroleum in a soxhlet. The defatted mass was exhaustively extracted repeatedly with 90% aqueous EtOH, until the extractive became colorless. All the extracts were mixed and concentrated under reduced pressure using rotatory vacuum evaporator. The concentrated extract was adsorbed on silica gel and fractionated through column chromatography using the solvent system chloroform: methanol (97:3). The polarity of solvent was gradually increased by addition of methanol. Repeated column chromatography afforded compounds 1 and 2 together with β-sitosterol and kaempferol.

Results and Discussion

The ethanolic extract of flowers of S. chrysanthemoideon repeated column chromatography over silica gel afforded compounds 1 and compound 2 together with β-sitosterol and kaempferol. The structure of β -sitosterol and kaempferol was confirmed by their comparison with an authentic sample (TLC) and reported data of the compound.

Compound 1

It was obtained as crystalline solid from MeOH

Melting Point: 220-222 °C

Molecular Formula: C_{30}H_{28}O_{16}

Molecular Weight: 644

1H-NMR (CDCl₃,100MHz, δ ppm): 2.66 (d, J=1.6 Hz), 3.49 (s), 3.25 (s), 7.70 (d, J=8.4 Hz), 6.38 (d, J=7.5 Hz),7.02 (d, J=7.5 Hz), 7.29 (d, J= 1.5 Hz), 5.45 (d, J=6.8 Hz), 5.49 (d, J=7.5 Hz),5.42 (d, J=6.8 Hz, C-1’ anomeric proton),4.98 (d, J=5.8 Hz , C-1”), 3.65-4.72 (sugar multiplets)

13C-NMR(CDCl₃,150MHz, δ ppm): 79.3 (C-2), 43.0 (C-3), 190.1(C-4) 162.8 (C-5), 110 (C-6), 163.5 (C-7), 99.7 (C-8),127.9 (C-9),115.7(C-10), 123.9 (C-11), 113.6 (C-12),141.1 (C-13), 147.0 (C-14), 41(-OCH₃), 40.2 (-OCH₃), 20.9 (-OCH₃)

Arabinopyranosyl: 101.9 (C-1’), 73.1 (C-2’), 76.0 (C-3’), 69.9 (C-4’), 76.0(C-5’), 69.4 (C-6’)

Glucopyranosyl: 103.1 (C-1”), 73.1 (C-2”), 75.5 (C-3”), 69.3 (C-4”) 75.0 (C-5”), 60.3 (C-6”)

The compound 1 was found to be positive for coloration with methanolic FeCl₃, Moliš test and Shinoda test (Mg/HCl)there by indicating flavonoid nature of compound. IR spectra of compound displayed absorption bands at 3302, 1665, 1622, 1505 showed presence of hydroxyl and carbonyl functions in the compound. The molecular formula of compound was calculated as C_{30}H_{28}O_{16} which corresponds the molecular weight 644 amu, due to the presence of molecular ion peak at m/z644[M]+,645[M+H]+, 675[M+CH₃OH]. Other fragment ion peaks appeared at m/z 452[(M+H)+-(OCH₃+162)] and 273[(M+H)+-(OCH₃+O]
The 1HNMR spectrum of compound displayed two doublets at δ 6.38 (d, $J = 7.5$ Hz, C-12) and δ 7.02 (d, J = 7.5Hz, C-13) and one doublet of 1.6 Hz coupling constant appeared at δ 2.66 (C-3) assigned for flavonoid proton. A doublet of 8.4 Hz at δ 7.70 ascribed to C-6 of flavonoid. The position of two, 3H proton singlet at δ 3.49 and δ 3.25 assigned for two OCH$_3$. The 1H signals appeared at δ 3.60-5.4 ascribes the sugar moiety in the molecule. The position of two doublets at δ 5.42 (d, $J= 6.8$ Hz) and δ 4.98 (J=7.5 Hz) represents two anomeric sugars. The presence of two sugars were further in agreement with the FAB-MS data displayed peaks at m/z 452 and 273 arose by the loss of two sugar molecule from the molecular ion peak. All these values were in agreement with its 13C NMR data. The coupling constant value of anomeric sugar showed β configuration in both the sugar molecule. Compound when hydrolyzed with 7% methanolicHCl furnished two glucose molecules (from PC and TLC). Methylation, methanolsysis and partial hydrolytic studies revealed the position of both the sugar in different carbon. All these data were in agreement with the reported data of flavonoidal glycoside. Hence compound was identified as Flavon 5, 4’dimethoxy 8 methyl 7-O-β-D glucopyranoside-5’-βDglucopyranoside. (Figure-1)

Compound 2

It was obtained as colourless crystalline solid from MeOH

M.P.: 196-198° C
FAB MS (m/z): 606[M]+, 607 [M+H]+, 460 [M+ H-Rham]+298 [MH–(rha+glu)]+, 255, 209
1HNMR
(CDCl$_3$100MHz, δppm):6.83(d,J=8.4Hz), 7.68(s), 7.24(s), 6.62(d, J=8.4Hz), 2.48 (s), 2.65(s),9.06 (s)
Glycone:5.43 (d,J=7.8Hz), 5.2(s), 3.5-4.9 (Sugarproton).
Molecular weight: 606
**I.R. (ν_{max}KBr) cm$^{-1}$: 2995, 3000, 1640
Molecular formula : $C_{28}H_{30}O_{15}$
13CNMR (CDCl$_3$150MHz, δppm):Aglycone163.9 (C-1), 117.6 (C-2),1473 (C-3),122.21(C-4),125.4(C-5),145(C-6),128.6(C-7),163.3(C-8),191.4(C-9), 18.4(C-10),138.7(C-11), 116.3 (C-12), 115 .7(C-13), 115.4(C-14), 176.0 (C=O),43.3(CH3),56.3 (OMe)
Glycone:103.0 (C-1’),73.6 (C-2’),79.6 (C-3’), 63.1 (C-4’),76.3 (C-5’), 61.2(C-6’).
Glycone: 101.9 (C-1”), 73.4 (C-2”), 77.4 (C-3”), 69.9 (C-4”), 60.9 (C-5”), 18.5 (C-6”).

It gave green coloration with FeCl₃ and also responded positive test with Molish reagent there by indicating phenolic nature of the compound. IR spectrum of compound showed characteristic bands at 2995, 3000 and 1640 cm⁻¹ for phenolic hydroxy and carbonyl groups. ¹H NMR spectrum of the compound displayed two 1H proton singlets at δ 7.24 and δ 7.68 for C-5 and C-4 hydrogen, which confirmed the presence of xanthone skeleton in compound. Two doublets of 8.4 Hz coupling constant appeared at δ 6.83 and δ 6.62 showing an ortho-coupling. Two up field sharp singlets at δ 2.48 and δ 2.65 indicated the presence of two methoxy group in compound, whereas a weak singlet at δ 9.06 were assigned for hydroxyl group. Two anomeric proton resonated at δ 5.43 (d, J = 7.8 Hz) and δ 5.2 (s) with other sugar peaks appeared between δ 3.1-4.9 assigned for 10 sugar protons. The molecular weight of compound was deduced as 606 amu which corresponding the molecular formula C₂₈H₂₈O₁₅ due to the presence of molecular ion peak at m/z 607 [M⁺H]⁺. The presence of these different groups were in agreement with the mass fragmentation of a compound as shown by its FAB-MS which furnished peaks at m/z 460 [M+H-Rham]⁺, 298[M+H–(Rham+Glu)]⁺, 255 [M–(2Glu+COCH₃)] and 209[M+(2gly+COCH₃+OCH₃)]. The structure of glycone was further supported by its hydrolysis studies. Compound was hydrolyzed with 7% methanolic HCl for about 8 hours. It furnished an aglycone identified as 3-Acetoxy 1-hydroxy 6-methoxyxanthone one from its reported data. The neutralized hydrolysate gave two sugars identified as glucose (PC, Rf value 0.18) and rhamnose (PC, Rf value 0.37). Compound 2 on partial hydrolysis yield one rhamnose (PC, Rf value 0.37) and one Mono glycosidic aglycone. The prosapogenin on further HOH yield one xanthone as an aglycone (TLC) and glucose (PC, RF) showed the sequential loss of sugars. The point of glycosidation was established by the ¹³C-NMR data of sugars which was fixed at C-3 of glucose with C-1 of rhamnose. The configuration was found to be β in glucose and α in rhamnose by the J value of anomeric sugar in its ¹H-NMR spectrum. These all values were compared with the reported data of xanthone glycosides. Thus on the basis of spectral studies compound 2 was identified as xanthone 3-Acetoxy-1-hydroxy-6-methoxy 8-O–β–D glucopyranosyl (1→3) α–L rhamnopyranoside. (Figure-2)

Acknowledgement
Authors are thankful to IIT New Delhi for NMR spectra and CDRI Lucknow for Mass spectrum of compounds.

Disclaimer Statement
Authors declare that no competing interest exists. The products used for this research are commonly used products in research. There is no conflict of interest.
between authors and producers of the product.

References

17. R.D. Gaur “Flora of the district garhwal north west Himalaya”,587

